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SUMMARY

The spanwise vortex-lattice arrangement is mathematically established by
lattice solutions of the slender wing which are shown to be analogous to the
chordwise vortex-lattice thin wing sdlution. Solutions for any N number of
panels to infinity are obtained. With the optimum lattice for any N value the
slender wing theory 1ift and induced drag and thin wing theory 1ift and moment
are predicted exactly. For N, slender wing elliptic spanwise loading and
thin wing cotangent chordwise loading are predicted,which proves there is
mathematical convergence of the vortex-lattice method to the exact answer.
Based on this A+o and an A> planform spanwise lattice arrangements, an
A-vortex-lattice spanwise system is developed for arbitrary aspect ratio.

This A-lattice has the optimum characteristic of predicting 1ift accurately
for any N value.

INTRODUCTION

Growth of computer facilities has given the engineer a powerful tool for
obtaining solutions to generalized problems. This is possible because with
numerical or finite-difference methods the equations of a problem can be
simplified readily to computer language. Vortex-lattice methods have been
developed extensively for steady and unsteady pressure prediction and for
planar and nonplanar configurations. Examples of some of the work and ot
investigations in the vortex-lattice method and aspects and applications of '
this method are reported in references 1 through 20. A brief description
of the typical vortex lattice is that the surfaces are divided in the spanwise
and chordwise directions into panels which cover the surface with a lattice.
The sides of the panels are parallel to the freestream and the chordwise panel
boundaries follow the surface contour. The 1/4 chord line of each panel
contains a bound or lToad vortex while the trailing vortices are at the sides
of the panel. The boundary condition of no flow through the surface is ful-
filled on every panel at one point located at the lateral center of the 3/4
chord line of the panel. These panels are distributed in a uniform, and thus
geometrically simplest mesh, referred to as a planform lattice. However, in
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1966 an application of the lattice method of reference 5 to a swept wing showed

that the chord loading in the panel bordering the wing leading edge was too /

low, the spanwise loading near the wing tip was too high for engineering

acceptability, and the net 1ift slightly too large. This was with 100 panels

on the semispan, 10 chordwise times 10 spanwise. Investigation of a iattice ;
mathematical model was made at that time of the chordwise panel distribution Lo
and later reported in reference 20. The results of this work showed that the :
loading at the leading edge panel needs a factor of about 1.128 which improved
the loading value in that panel. However, the too high wing tip loading and
1ift was not explained. In early 1972 a mathematically rigorous spanwise
vortex-lattice analysis was developed based on slender wing theory (part of
ref. 19). This was mathematically analogous to the earlier chordwise solution
but more complicated. This spanwise lattice arrangement is characterized by

a 1/4 - 3/4 rule which locates the trailing vortices inboard 1/4 of the
planform panel span and the no flow through points inboard 3/4 of planform
panci span from the planform panel outboard edges. This inboard shift cf

the lattice leads to solutions with less loading near the wing tip and less
lift, which improves the loading in the above example. This example supports
the observation that accuracy depends on the position of the panels in the
lattice as well as density of panels.

The objectives of the present study are to correlate and extend the work
of references 19 and 20, to investigate the effect of three-dimensional
planform on lattice arrangement, and to formulate a generalized vortex-lattice
arrangement and method for three dimensional wings.

7
SYMBOLS
A aspect ratio
A swept panel aspect ratio [eq. (52)]
b, ¢ wing span, wing chord i
CL, CLa Tift coefficient, Tift-curve slope
Cp;4 induced drag coefficient
c ., C section 1ift coefficient, section lift-curve slope

section pitching moment coefficient due to angle of attack
eNene parameter of chordwise loading [eq. (38)]

fNene  chordwise loading factor [eq. (41) and table 5]

G spanwise loading coefficient or dimensionless circulation [eq. (1)]
9nn parameter of spanwise incremental circulation [eq. (7)]
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spanwise loading gradient factor [eq. (19) and table 2]

1:: spanwise loading factor [eq. (22) and table 3]

N, N integer number of panels on wing semispan, and wing chord respectively
n,m integers denoting spanwise position of vortex, and downwash point
Ne,Mc integers denoting chordwise position of vortex, and downwash point
Vv free stream velocity

a angle of attack

r circulation, also Gamma function

n lateral coordinate per wing semispan

Ao sweep angle at 50% chord line

£ longitudinal coordinate per wing section chord

Subscripts:

v vortex

W downwash point

LE leading edge

SLENDER WING OPTIMUM VORTEX LATTICE

Physical Similarity of Trailing Vortex Sheet Flow with
Chordwise Thin Wing Theory Flow

The objective of this study is to do a rigorous analytical derivation
to determine the optimum spanwise distribution of panels analogous to the
analysis done in reference 20 for the optimum chordwise distribution of

panels.

Optimum here defines the lattice which best duplicates exact

solutions. A physical similarity does exist between the vorticity distribution
of the chordwise loading with the trailing vortex sheet from a finite span

wing.

This can be seen graphically in figure 1 where thin airfoil theory

chord-load vorticity is compared with the trailing vorticity which is predicted
by slender wing theory (refs. 21 and 22). It has often been noted that the
mathematics of thin wing and sliender wing theories have a striking similarity.

~om figure 1, it is noted that a similarity of vorticity is obtained
when .he wing tip at n = 1 correlates with the wing leading edge, and the
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midspan point at n = Q correlates with the wing trailing edge. Since this
correlation makes the flow fields analogous, it follows that the optimum span-
wise panel distribution is analogous to the optimum chordwise panel distribu-
tion given in reference 20. This is subject to the condition that the
distribution start at the wing tip and proceed inboard. Applying this
condition and using these distribution conditions, the spanwise panel
distribution becomes that shown in figure 2. The determination of an optimum
chordwise panel distribution is made by two-dimensionalizing the problem to
planar flow and thus the spanwise extent of the panel is infinite. The optimum
chordwise panel distribution is that which yields thin wing solutions which
most accurately duplicate the results of exact thin airfoil theory. In the
present work, the determination of an optimum spanwise panel distribution

will be made by two-dimensionalizing the problem to cross-sectional flow

and thus the chordwise extent of the panel is infinite. The optimum A-0
spanwise panel distribution is that which yields solution which most
accurately duplicates the results of slender wing theory.

The objective of the present paper is to apply the analytical methodology
of reference 20 to determine the optimum spanwise panel distribution. This
distribution should result in an exact prediction of total 1ift for any
number of spanwise panels and provide spanwise loading factors. The chordwise
panel distribution analysis is correlated with thin airfoil theory for the
determination of optimal accuracy. In an analogous procedure the spanwise
panel distribution analysis here will be correlated with slender wing theory
for the determination of optimal accuracy.

Formulation of Spanwise Lattice Matrix and Solution
to Infinity which Satisfy A1l Boundary Points

Slender wing theory ecuations for additional loading (ref. 22) are

dG (n) )
dn 7 - 477 (1)

e e ) = (- n2)2

_r(n) | &S
where Ga(”) = e " Jba

Also presented in reference 22 are solutions for flap, ailerons, and all
spanwise loadings, which can be used to evaluate lattice accuracy when a
problem involves these types of loadings.

By Biot-Savart law, the downwash at nyp due to an infinite extent vortex
at ny, is (see fig. 2)

Arn/g
w(n, wm5 (2)

yn ~

mn =

with vortices located at
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. n = 1/y
Myn = % N (3)

boundary condition points at

_.m=- 3/4
N = (4)
with equations (3) and (4) the downwash angle at Nm is
N
o (] . ] )gNn
a : nvn-nwm nvn+nwm 3N (5)

n=

with equations (3), (4), and (5) for additional Toading (oy=a), equation
(5) becoines

N
- 2 1 1 Oy . -
1= j(zn_2m+]+2n+2m_2) Nn; m ],2,...N (6)
n=1
where
3NAT
= Nn _ 3
Nn e 7 NAGaNn (7)

Generalized Inversion of Inn Equations

Equation (6) represents N unknowns, gyn, and N Equations. An inversion

of equation (6) means a linear simultaneous solution of N equations. Solutions

for N=1, 2, . . . can be obtained readily for small N and from the resulted

series formed of gy,, the general solution can be determined by induction. For

N =1, the solution is
9, 7 1

For N = 2, the linear simultaneous solution of two equations is

7 2
12917 * 15 923 then, 95 " 3
] 7 _ 54
12-7997 %39 922 7 35
These solutions are done for higher values of N until a sequence is formed.
This sequence is presented in table 1. Examination of the 1st column in
table 1 shows the sequence follows the general term of

347

Bl S A ST

A o ek



9

for n=1:

N+ Tyodd'

In the second column, ratios of gN2/gNL gives the sequence

N = 2 3 4 5 6

N2 _ 32x3  32x8 32x15 32x24  32x35
I ix7 3x9 5xT1 7x13 9xT5

This shows the general term as [and using 9N from eq. (9)]

forn = 2:
2(N2 - 2 - -
Iz = 32(N 1) 9N i} 3x3Z(N+1)(N-T)(N) (2N s)odd!
(2N + 3Y(2N - 3) (2N+3)0dd!

Similarly, ratios of gN3/gN2 give the sequence
N = 3 4 5 6

IN3 _ 52xE  52x12 52x21 5232
In2 11x4  3x13x4 5x15x4 7x17x4

This shows the general term as [using Oz from eq. (10)]

for n = 3;
9 - 52(N2-22)gNz ] 3x32x52(N+2)(N+1)(N)(N-])(N-Z)(ZN-7)0dd!
2Z{2N-5)(2N+5) 24(2N+5) ) 4!

These sequences of In1° In2° and 93 show that
2(N2.32
Ing - 72(N2-3 )gN3
32(2N-7) (2N+T7)

= 3x32x52x72(N+3) (N+2) (N+1) (N)(N-1) (N-2) (N-3) (2N-9) 4,1
I2X2F(2NHT) g

(10)

(11)

(12)

Then in ﬂenera1 the recurrence is [from first equalities of eqs. (10), (11),

and (12)
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9y -
Nn = \597)° Nectnc1/2)2

The general term for net values of In is [from second equalities of
eqs. (10), (11), and (12)]

g 3(N+n-1)'[(2n-1 )Oddl]z (2N-2n-] )oddl (]4)
N AT TTR=TTTIZ (2 2n-1) g 1

Equation (142 is an exact mathematical inversion of the matri'. type represented
in equation (6). The equation (14) solution is exact for a' ' interger value
of N, including N equal to infinity.

The odd factorial (2n-1)odd! can be converted to direct -actorials by the
relation

(2n-1)1 = (2n-1) 44! (20-2),,!
where (2n-2) ! = (2n-2) (20-8) (20-6) .... = 2" (n-1)(n~ )(n-3)
= 27T (ne1)
then  (2n-1) 4 ! = (20-1)1/2" (n-1)1 (15)

Using equation (15) in equation (14), then Inn in terms of conventional
factorials is

_ 3n2(2N-2n)! (2n)!(N+n)!] 2
= (R+§)(2N2%n)! [(ﬁ?%ﬁéﬁfg%r] (16)

Factorials suggest Gamma functions. Extensive relations of Gamma
functions and tables are presented in reference 23. In terms of Gamma
functions equation (16) becomes

9y . 3n2 T(N-n+1/2) T(N+n+1) r(n+1/2)] 2
Nn = STNFY T(N-n+1) T{Nen+1/2) [‘?IEITS" (17)

The gy function is thus expressed in three forms given by equations
(14), (16), and (17) respectively.

Gradient of Spanwise Loading

The spanwise loading gradient is [using eqs. (3) and (7)]

' _ T
then G,'(nvn) = - 3 9y, (18)
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where gyp is given in equation (16). The spanwise position, ny,, is given by
equation (3). Comparable slender wing theory values of Ga’(nvn9 are obtained
by replacing n by nypy in the gradient function given in equation (1). Com-
parison of equation ?18) with the slender wing theory value of loading gradient
shows that the lattice-method loading gradient requires a factor. This factor
can be formulated accurately by this slender wing solution.

The loading gradient factor is defined as

G&(nvn) slender wing theory (19)
G, (hy,)

h

Nn =

Numerical values of hyn computed from equations (19) and (18) are presented
in table 2. These factors are very near unity except at the wing tip
region. Included are values for N*~ determined in a following section.

Spanwise Loading

With the vortex position set by equation (3) the aGynp extends from nyh =
(n - 1/4)/N to(n - 1 - 1/4)/N. The middle of this segment is at np =
(n - 3/4)/N, that is at the same spanwise position as the boundary condition
points given by equation (4). The spanwise station of the loading will be
assumed to be at the middle of the segment, that is, at ny. For symmetrical
loading, the loading at wing center is constant in the range
-(1 - 3/4)/N = n = (1 - 3/4)/N, and the middle of this segment is at n, = 0.

From equation (7) the loading at the n=N segment is

N _ T
Gann = 58NN = 3N 9NN
_ = _T
At N-T segment G\ =8G Gy v 1 = 3y (g + 9y Ny
N
Thus at the m segment Gonn = %N’:E: Inm (20)
m=n

where gyy is given in equation (16) and in table 1, but with n=m numbers.
These loadings are at the spanwise stations

n -3/4 .
——N——,forn>] (2-‘)

= 0 ; forn =1
Comparable slender wing theory values of Ga(n?) are given by equation (1) with

np of equation (21). Comparison of equation (20) with the slender wing theory
value of spanwise loading shows that the lattice-method loading requires a
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% factor. This spanwise loading factor is defined as '
: ? :
i i _ Ga(“n) slender wing theory f :
:,, Nn - G (ﬁ ) (22)
i a' n ..
e . - ,
L Numerical values of iy, computed from equation (22) are presented in table 3. ‘ i
, These loading factors are very near to unity. Included are values for N
ﬁi Lift-Curve Slope and Induced Drag
" The 1ift ccefficient is the integration of the loading coefficient, then
1 .
CL = A -1f G(n) dn (23)
Since AGyp is constant between ny, and -ny,, then the integration for 1ift is
a summation of the pyramid layers of 2nyp AGy,. Then by equation (23)
. N f
g ' C . =2A :E: GNn"yn (24) :
i , n=1 .
¢A

With the AGNn given in equation (7) and nyp in equation (3), then equation (24)
becomes CLG- The 1ift-curve slope is

N

2
B S (n- g, (25)
n =l

where gnn is given in equation (16) and in table 1. With equation (16) i
inserteg into (25) the 1ift-curve slope becomes CL, = nA/2 for any value of ‘
N. This compares with the slender wing value given in equation (1).

In a following section for N°* it is proven that C| = nA/2 for N,

The induced drag coefficient is given by (for constant ap)

N

_A _A
D; =7 ./ aie(”)dn -7 :E: %8Gy
n=1

C

;
¢

where apn is that in equation (5) but with changed position of n and m. Since
an=a by the conditions of equation (6), and using equation (24), then Cp; =
CLa/2. It was shown by equation (25) that C_ = wAa/2 for any value of N,
then
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which is then also valid for any value of N. This is identical to slender
wing induced drag. Therefore, it is concluded that this lattice and boundary
point distribution results in exact integrations for 1ift and induced drag for
any interger N. This exactness was not unexpected since the mathematics

is similar to the chordwise solution (ref. 20) in which the first harmonic
solution (elliptic chord loading) integrates exactly.

Solutions for N Approaching Infinity

Detailed mathematical derivations are developed in reference 19. Here
the results are a digest of the mathematics in that study. The primary
purpose for exploring solutions at N> 1is to prove that a finite lattice-
method solution does mathematically converge to the exact solution. In this
problem the exact solution is elliptical spanwise loading evaluated from
slender wing theory. Mathematical proof is needed that the integration for
1ift remains exact as N*=, Asymtotic values of the factors hyp
and iNp as N> are useful in the tables of these factors. As N the
functions become so unique and manageable the reader will find a mathematical
exciting experience.

Fquation (16) can be used to mathematically prove that spanwise
distribution predicted from finite element loading methods do converge on
the exact answer as the number of elements are increased.

Using the relation for large factorials

NS (2n)1/2 N1/ 2N (26)
then equation (16) becomes (except at the point n=N, i.e. at m=1 when N=*)
INn 3n (N + n)]/Z‘l . = 3% (27)
n(N+n) (N-n)’ AL
Combining equations (3}, (18), and (27) results in
-n
Ga'(nvn) = W (28)

Equation (28) is the same as the loading gradient given in equation(1) by
slender wing theory. Thus it is proven that as lattice panels are increased,
the solution converges to the exact loading.

With the relation that
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T(N + (N +1/8)1/2 (29)
then equation (17) can be expressed in the forms
N> N
n = finite N-n = finite (30)
o - 3n2[T(n + 1/2)]2 Iy Non = NV/ZT(N - n+1/2)
\ e+ 1) 2 /ET(N - n +1)

Then for N™™ the spanwise loading gradient factor of equation (19) becomes

N N

n = finite 5 Nen= finite (31)
b = n-1/4 [rin +1) ] N Non = r'(N-n + 1)
noLrintd/2) ], (N-n + 1/8)/2r(Nen + 1/2)

With the use of the series summation

5 ﬁ%{—-‘r/yﬁ = 2(N-m+1/2) H-/;Z—) (32)

=0

the spanwise loading factor of equation (22) for Newbecomes

\= (N-n+3/8)72 /(N -n+1) (33)
INN-n TN T nFI/2) TN - n + 172) .

Numerical values of equations (31) and (33) are listed in tables 2 and 2
Examination of these equatiorc indicates simple relationships. These
relationships extend to chordwise loading factors developed in a later
section and can be expressed in one equation as follows:

fOT‘ N = N = oo
c 1/2 ) f
hN N-n = -——fﬂﬂ___ = _ 1N,N—n+1 _ Nc Nc nc+] | ]
a-171602) 72~ [ 6nene) ] V2 Tiane(u-n -1)2) V2
f

For the zero condition

. 2
BN (N-n)=0 = ch,(nc.1)=0 = 75 = 1.128379

m
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For N-n =]

4 .
h 4 =f _q = — = 1.009253, h, __, = .954930, i, 1 °
N,{(N-n)=1 NC,(nc-l)-l for * UN,n=1 N, (N-n-+1)=1
f 4, = 977205
Nc,(Nc'"c+]"]
For N = = the expressinn for CLQ develops into the following scries
summation:
C _ (A (24)!
L, * (?) 3242 :E: 238[aT) 720+ 1) (20+3)(22+5) (35)
5=0

This factor of £/2 is =, thus CL = mA/2.

Qa

CHORDWISE VORTEX LATTICE

Formulation of Chordwise Lattice Matrix and Solution
to Infinity

In reference 2u the lattice is distributed into equal length chord
segments and the chcrd loading vortex is located at the 1/4 points of each
of the chord segment<; and boundary condition point at the 3/4 point of
each of the chord segments. Then the load vortex chord station and the
boundary condition chord station are respectively at

m-1/4
- n3/4 - C
%"c N ! Smc N (36)
c C
where £ = x/c.
The loading equations to be solved are given as,
Nc e
Ncnc
?ﬁ;:?ﬁZIT = 1; m. = 1, 2, . .. NC (37)
nC=
where
-AC
cc mcVa mWVa Zno
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The matrix inversion of equation (37) is obtained as a factorial function
- - - 1 N

‘n - (2Nc-2nc+1)odd! (2nc 3)odd! _ (2Nc2nc+1)! (2nc 2)!

¢ (2Nz2n gyy (2N -2)gy) ZZNC’Z[(NC-n,)!(nC-1)!] 2

In terms of Gamma functions

eN o 2nc(2NC-2nc+]) r(nc+l/2) r(NC-nC+1/2) (39)
cc n(Zné:17’r(nc+1) r(Nc-nc+1)

Numerical values of equation (39) are presented in tabie 4.

Chordwise Loading Factor

The exact solution by thin wing theory gives the additional loading by
the function [using gq. defined in eq. (36)]

Yn 1-&m N
e - Jc_2 c\1/2 _ 2 o 1/2
Nene = 3va = 7 an ) 7 G Y (40)
o
The chordwise loading factor is defined by the ratio of equation (40) to
equation (39). (@)
1,¢
Y - ] - -
fyn = Mencthin _ cthin _ (N-n *#3/4)7"" (2 -1) (n +1) T(N_-n +1)
cc e Y . 1/2
N.ne n. n.(2N.-2n +1) (n_-3/4)""" r(n _+1/2) T(N_-n_+1/2)

Numerical evaluation of equation (41) for a range of N, are given in table 5.

Chordwise Lift-Curve Slope and Pitching Moment

Section wing 1ift is the integration of the chordwise 1oading and section
roment is the integration of the product of chordwise loading and moment arm.
In mathematical representation

f] Y /! Y
¢, = 2 o Ve dg . Cn = 2 0 Ve tde (42)
LE
The lattice loading is constant with £ ovar the interval
86 = [n -(n_-1)]/N_ = 1/N_ and the lattice load vortex is located at
N c'c c c

Ene = (nc-3/4)/NC along the chord and the moment arm extends to this vortex.
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e ¢ f%i (43)
C 2n m - 2n 3
L = = }: e , ) (n_-3/4) e
o c Nc"c LE ch Nc"c
nc=1 nc=1

The summation terms in equation (43) are listed in table 4 which when inserted
into equation (43) show that the 1ift and moment for arbitrary N is the same
as predicted by thin wing theory, that is

- =TI =
¢, = 2n, ¢ 5 s a.C. .
a U.LE

= 1/4 (44)

Proof that c, is Exact at A1l Values of N

Inserting equation (39) into (43) results in

Ne
c, .4 :E: nc(2Nc—2nC+1) P(nc+]/2) F(Nc-nc+]/2) (45)
a N & (2n -T) t(n +T) T(N_-n_*T]

c
Now r(n+1/2) = (n-1/2) r(n-1/2); r(N-n-1/2) = r(N-n+1/2)/(N-n-1/2); and
r(n+1) = nr(n) = n!, then

"l Nen, r(n/2) r(N -n_+1/2)

(46)
a N néT'(NC-nc)!

The Gamma functions and factorials in equation (46) show trat this product
term is a symmetric function which is factored by an antisymietric term
(Nene)/Ne, Then some of the high nc terms cancel the low n. terms. By expanding
the summation a new summation can be formed given by

2n ®(z ) 1(nc#1/2) N -n +1/2) ()
o m n.T (N_-n)! 47
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where e(Nc -n)=1forn = Ne ,= 2 for n_ ¢ Ne
R c 2 €2

The summation term in equation (47) is the Legendre polynomial of the first

kind Py. (cos ©)g=g (see p. 36, ref. 24) and PN$]) = 1 for any N., Thus the

1ift-curve slope is 2 fo. any Nc which is that predicted by thin wing theory.
Chordwise Soluticns for N*=

For Nc™ and ne finite or Nc-n. finite then equation (39) becomes

N—)'m

C .. .
nc—f1n1te
_ an VY2, 1(n 41/2) )
eN n = c ¢ ‘¢
cc n(ZnC-T) r(nc+1)
(48)
N e
Nc-nc=f1n1te
®N_,N -n = EEFC-nE:;éz) I1(Nc"nc+]/z)
c’c ¢ J
nnc F(Nc—nc+1)
For both N_ and n_ large [using eq. (29)], equation (33) becomes
N—m
e
1/2
2(N_-n_) 1/2
e = c ¢ =2 1-¢
NCnC n !/L i ( £ ) (49)
c

Equation (49) is identical to the thin wing theory additional loading given
inequation (40) and shows that a chord lattice solution converges to
mathematical exactness as the lattice grid becomes infinite. With equations
(48), (40), and (41) the chordwise loading factor at wing leading edge is
given by (for N.»*)

r(n_-141)
fN n c

ce (nc-1+1/4)”2 r(n_-141/2)

This function is identical to that of equation (31) when nc-1 = N-n, and is
listed in equation (34). With equations (48), (40), and (41), the chordwise
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lcading factor at wing trailing edge is given by (for No*=)

] (N_-n +3/8)/2 t(N_on +1)
N N -n = (e cC C
c’c ¢ Wc—ncﬂ]?) rTNc-nc+‘I/2)

(51)

This function is identical to iy y_p Of equation (33) when N -n. = N-n, and
is listed in equation (34).

Ao-VORTEX LATTICE

Dependency of Spanwise Lattice on Effect of
Aspect Ratio

As aspect ratio approaches zero the spanwise optimum lattice arrangement
is that defined by equation (3), that is at Mvn = (n-1/4)/N. As aspect
ratio approaches infinity the spanwise lattice arrangement is the planform
lattice which positions the trailing vortices at nyn = n/N, that is at the
outside edge of the lattice panel including a vortex at the wingtip. This
is because at A = « the spanwise loading has the same distribution as the
wing chord along the span. This high loading near the wing tip (when A = =)
must be taken into account by the lattice trailing vortices. The objective
here is to develop an aspect ratio function factor for the lateral panel
positions which asymptotically approachestheccrrect values at Ag»0 and at
Ag+=. The subscript e denotes the effective swept panel aspect ratio given
by

Ae = A/COSA]/Z (52)

The planform lattice (nyy = n/N) is the lateral lattice arrangement that
has been in general use in most vortex-lattice methods.

An aspect ratio equal to four is about an aerodynamic mean between
0<Aei~. Loading values based on the Ag~»0 lattice and on the Ag»~ lattice will
be computed for an Ae = 4 rectangular wing. Comparison with the loading
predicted by an accurate analysis will establish the A-effect function that is
qeeded. By Biot-Savart law the downwash due to an unskewed horseshoe vortex
is

2 . 2 3 )2
) - Gnnc 89 * /g™ (g nyn*yp) %o *A/50" My v (53)
" 2ny ™ Nantvn "wm™"an"vn

Where €0 = £y, - Eync» and Gppe is the dimensionless vortex strength of the
elemental horseshoe vortex. For Nc =1 solution, £y remains constant equal to
1/4 for A = 4, n,, is the lateral middle of the n pancl. Foi the slender
wing (Ag~>0) lattice use
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yn = n-1 4 - M- Z = Q (54)
For the planform lattice use
"n N "wm R * "an -0 (5)

The equation to be solved for additional loadina for an N; = 1 solution,
A = 4 rectangular wing is

L R V2O T CNRE =N LI VTV VT e
-5 Z - (56)
" vn Mwm™ "vm
Wing lift-curve slope is determined from equation (24) and wing loading
by equation (20) with which
(CZC)n= _ZA__ 5 (57)
CLcav CLa Nn NN

where for the A-0 lattice iy, values are given in table 3, while for the
planform lattice iy, are a]? unity. Results of the solutions of equation
(56) with the Ag~0 lattice of (54) and with the planform lattice of (55),
for increasing N, are presented in tables 6 and 7. An accurate loading

prediction of this A = 4 rectangular wing is made in reference 19. From

reference 19

C, = 3.6623, n = cosY

* (58)

sing + .07879sin3¢ + .01290sin5¢ +.00350sin7¢ + .00170s1n9%)

=I‘L.b

3
C

Percent differences from the values of equation (58) are shown in tables 6 and
7. For this A = 4 wing the A+0 lattice has less than one-half the error of

the planform lattice.

Spanwise A -Vortex Lattice

Since for the A = 4 wing the A-0 lattice prediction is too small and the
planform (A+=) lattice prediction too large then a factor can be developed
between the two which forms the basis of spanwise Ag-lattice arrangement.

This factor is 2/4Re+4, then for the Ae-lattice
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where A, is defined in equation (52) and n, is the spanwise position of the
computeg loading distribution, These spanwise lattice panel positions
asymptotically approach the A+Q lattice and the planform lattice as A-0 and =
respectively. With equation (59) the solutions of equation (56) for 1ift and
loading are listed in tables 6 and 7. With the Ag-lattice the predicted 1ift
and loading is accurate for all N's which was the basis for the term

optimum applied to Lhe A-0 lattice and chordwise lattice. Equation (59) is
simply a mathematical statement that relative to the planform lattice all the
panels are shifted inboard by 1/2N#Ag+4, and that the downwash point is at the

lateral center of each panel except in the wing root panel.

Application of the Ae-Vortex Lattice

For a unifoi1n vortex lattice, the elemental ckewed horseshoe vortex
lateral position at the trailing vortices is given by nyn in equation (59) and
the chordwise position by gyp. in equation (36). The downwash points are
positioned laterally at nym in equation (59) and chordwise at gymc in
equation (36). Let Inpc be the unknown circulation strength of the elemental
skewed horseshoe vortex. For symmetric wing loading I'pp. is determined from
an NNc matrix solution which satisfiessNNc downwash point Boundary conditions.
The pressure coefficient at span station np in equation (59) and chord

station gyne = (nc-3/4)/N¢ is given by

AC . 'nn
p = =2N ip fo o€
nn. c ANn NcnC Cnv

where spanwise and chordwise loading factors are included [eq.

and 5]. Now

then the spanwise loading at n, of equation (59) is
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v .
r = (o =9 T
n)atn 7% )atnn ANn*n

which includes the spanwise loading factor [eq. (59), table 3].
loading gradient at span station nyp in equation (59) is

an
I = ~Pann N(r,-T

dn n+l )

where Tn is given in equation (61) and where the spanwise loading gradient

factor is given by

1 2 : .
ANn 1-(1 hNn) i with hNn in table 2.

The 1ift coefficient is [T, from eq. (61)]

The induced drag is given by

1
- _A._

n=2 }
N-1

_ N 1,1 1 -
%y T TV EN-n+1/2'N+n—1)F :E: m- n+1/2 m+n+1)(rm I1m+1il )
m=]

where Tp is given in equation (61).

(62)

The spanwise

(63)

(64)

(65)

For spanwise loading distribution already

known then equation (65) provides a convenient method for predicting induced
drag. For this case Fg)atnn is known then T,, is determined from equation (62)

for application in (65)

CONCLUDING REMARKS

The application of the vortex-lattice method to the slender wing configu-
ration has provided a rigorous analytical basis for the spanwise properties

of the vortex-lattice method.

verge to thin wing theory results.

Mathematical similarities are shown between

the spanwise panel lattice solution and the chordwise solution which con-
As the number of chordwise panels approaches

infinity, thin wing theory chordwise loading is predicted exactly except in

the 1imit points exactly at the leading edge and at the trailing edge. At
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these two points chordwise loading factors are mathematically evaluated which
are useful in finite panel solutions. Similarly, as the number of spanwise
panels becomes infinite, slender wing theory spanwise loading is predicted
exactly except at the point of the wing tip. At this point a spanwise loading
factor is mathematically determined from a 1imit solution. The presentation
in this paper is based on a planform uniform distribution of panels chordwise
and spanwise. In a discussion in 1972 Mr. W. B. Kemp, Jr. of NASA-Langley
said he had found that the chordwise vortex-lattice solution gave an accurate
integrated 1ift for an arbitrary planform panel distribution along the chord.
As part of the present work this was investigated and it was shown that using
the 1/4 - 3/4 rule for locating the vortex and downwash point in the planform
panel, the chordwise 1ift-curve slope of 27 and also the spanwise slender wing
value of nA/2 are predicted for any distribution of planform panels on the
wing and for any total number of panels. However, the loading distribution
factors are not as near unity. The aspect ratio effect on spanwise lattice
arrangement has a weak chordwise counterpart for a chordwise lattice
arrangement. An initial study of this effect indicates that the chordwise
lattice arrangement differs when aspect ratio is less than unity. In
conclusion, the Ag-vortex-lattice arrangement of the previous section provides :
a uniform uncomplicated, accurate system. It leads to computations with a !
high accuracy to work ratio. ;
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TABLE 2. - han® SPANWISE LOADING GRADIENT FACTOR

n
N 1 2 3 4 5 6

1.082788
.965721  1.118660
.958851  1.000148 1.124345
.956981 .993739  1.005515 1.126193
.956199 .992082 .999207 1.007242 1.127013
.955795 .991404 .997613  1.000965 1.008002 1.127446

~ 4 Vo

954930 .990297 .995956 .997804 . 998625 .999060

\ O\

® 1.000564 1.000858 1.001459 1.003004 1.009253 '..:28379

DU H W —
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TABLE 3. - iNn’ SPANWISE LOADING FACTOR
\\\\D 1 2 3 4 5 6
N n=0
1 .954930
2 .983016 .966313
3 .990965 .988798 .972705
4 .994332 .993811 .992034 .974770
5 .996085 .995935 .995712 .993301 .975684
6 .99711¢ .997082 .997167 .996548 .993923 .976166
-N+n \\\\ \\\\‘
+6
w .999530 .999312 .998901 .997976 .995137 .977205
TABLE 4. - ey n CHORDWISE SOLUTIONS OF EQUATION (37)
cec
Ne N,
noo1 2 3 4 5 6 ey 1 z (n-2ey |
K SV ee n=1on cc
N
c
1 1 1 1/4
2 3/2 1/2 2 4/4
3 15/8 3/4 3/8 3 9/4
4 35/16 15/16 9/16 5/16 4 16/4
5 315/128 35/32 45/64 15/32 35/128 5 25/4
6 693/256 315/256 105/128 75/128 105/256 63/256 6 36/4
I [
N N</4
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TABLE 5. - fN n » CHORDWISE LOADING FACTOR
cec
% 1 2 3 4 5 6
. Ne
1 1.102658
2 1.122892  .986247
3 1.126095 1.004345 .980140
) 4 1.127139 1.007210 .998126  .978631
5 1.127603 1.008144 1.000974 .996589  .978043
6 1.127848 1.008559 1.001902 .999433  .995991  .977756
® 1.128379 1.009253 1.003004 1.001459 1.000858 1.000564
\
.Nc+nc \ \
\‘\\:6
® .999530  .999312  .998901  .997976  .995137  .977205
TABLE 6. - LATTICE COMPARISONS FOR PREDICTING
L , A=4 RECTANGULAR WING
planform lattice| A-0 lattice Ae—1attice
. CL ACL s % CL ACL Wb CL ACL v b
[+ a a ¢} a a
1 14,4904 22.61 | 3.2513 -11.27 |3.6176 -1.22
21 41267 12.68 | 3.4914 - 4.67 |3.6787 .45
3] 3.9629 8.21 | 3.5367 - 3.43 13.6622 0

C
TABLE 7. - LATTICE COMPARISONS FOR PREDICTING Cﬁ“ A= 4 RECTANGULAR WING
L

planform lattice A0 lattice Ae-1attice
Cp, Cp Cq C, Cg Cy, Cy CQ Cz i

n = = A ,% n _ % n ~ s ANn

N G G O 0 e Y
1500 1 1.092 -8.45| 0 1.273 1.187 7.251.146 1.176 1.179 -. 29 .9681
2.250 1.088 1.165 -6.62| 0 1.230 1.187 3.65[.073 1.1851.185 0  .9880
.750 .912 .914 - .21].625 1.026 1.024 .19].662 .989 .995 - .67 .9762
31167 1.126 1.177 -4.33] 0 1.224 1.187 3.09}.049 1.194 1.187 .58 .9936
,500 1.049 1.092 -4.01(.417 1.145 1.124 1.87[.441 1.1151.115 - .04 .9921
.833 .826 .799 3.34{.750 .891 .914 -2.57|.77" .871 .883 -1.36 .9807
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T.E.

Figure 1.~ Comparlson of chordwise loading with spanwise loading gradient.

n = [ 2 3 4
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ROOT TIP

Figure 2.- Spanwise panel distribution for N = 4, and location of trailing
vortex of 1/4 panel width in from wing tip, and location of boundary
point at 3/4 panel width in from wing tip.
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